Learning Graph Convolution Filters from Data Manifold

نویسندگان

  • Guokun Lai
  • Hanxiao Liu
  • Yiming Yang
چکیده

Convolution Neural Network (CNN) has gained tremendous success in computer vision tasks with its outstanding ability to capture the local latent features. Recently, there has been an increasing interest in extending CNNs to the general spatial domain. Although various types of graph and geometric convolution methods have been proposed, their connections to traditional 2D-convolution are not wellunderstood. In this paper, we show that depthwise separable convolution is the key to close the gap, based on which we derive a novel Depthwise Separable Graph Convolution that subsumes existing graph convolution methods as special cases of our formulation. Experiments show that the proposed approach consistently outperforms other graph and geometric convolution baselines on benchmark datasets in multiple domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topology adaptive graph convolutional networks

Convolution acts as a local feature extractor in convolutional neural networks (CNNs). However, the convolution operation is not applicable when the input data is supported on an irregular graph such as with social networks, citation networks, or knowledge graphs. This paper proposes the topology adaptive graph convolutional network (TAGCN), a novel graph convolutional network that generalizes ...

متن کامل

آموزش منیفلد با استفاده از تشکیل گراف منیفلدِ مبتنی بر بازنمایی تنک

In this paper, a sparse representation based manifold learning method is proposed. The construction of the graph manifold in high dimensional space is the most important step of the manifold learning methods that is divided into local and gobal groups. The proposed graph manifold extracts local and global features, simultanstly. After construction the sparse representation based graph manifold,...

متن کامل

Graph Based Convolutional Neural Network

In this paper we present a method for the application of Convolutional Neural Network (CNN) operators for use in domains which exhibit irregular spatial geometry by use of the spectral domain of a graph Laplacian, Figure 1. This allows learning of localized features in irregular domains by defining neighborhood relationships as edge weights between vertices in graph G. By formulating the domain...

متن کامل

Learning 3D-FilterMap for Deep Convolutional Neural Networks

We present a novel and compact architecture for deep Convolutional Neural Networks (CNNs) in this paper, termed 3D-FilterMapConvolutionalNeural Networks (3D-FM-CNNs). The convolution layer of 3D-FM-CNN learns a compact representation of the filters, named 3D-FilterMap, instead of a set of independent filters in the conventional convolution layer. The filters are extracted from the 3DFilterMap a...

متن کامل

Spatio-Temporal Graph Convolution for Skeleton Based Action Recognition

Variations of human body skeletons may be considered as dynamic graphs, which are generic data representation for numerous real-world applications. In this paper, we propose a spatio-temporal graph convolution (STGC) approach for assembling the successes of local convolutional filtering and sequence learning ability of autoregressive moving average. To encode dynamic graphs, the constructed mul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.11577  شماره 

صفحات  -

تاریخ انتشار 2017